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Abstract

The winter extreme precipitation over South China (SC) experiences a large

year-to-year variability, causing uncertainty in its prediction. Here, we find that

the boreal winter sea ice concentration (SIC) in the Okhotsk Sea can serve as a

precursor to the following winter's extreme precipitation frequency (EPF) over

SC, which has important implications for its prediction. Further analysis

reveals that the Okhotsk Sea SIC anomalies help to reinforce North Pacific

Oscillation-like atmospheric variability over the North Pacific, which induces

the development of El Niño-Southern Oscillation (ENSO)-like SST anomalies

in the equatorial eastern Pacific. The ENSO may act as a “power amplifier” to

boost the impact of the Okhotsk Sea winter SIC anomalies on the following

winter EPF over SC via a positive atmosphere–ocean feedback process. Our

findings suggest that the Okhotsk Sea SIC may act as a potential precursor for

the winter EPF over SC leading by about 1 year, and further improve our

understanding of extratropical-tropical interactions and aid predictability of

winter extreme precipitation over SC.
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1 | INTRODUCTION

The frequency and intensity of weather and climate
extremes, such as extreme precipitation events, have
increased in recent decades (IPCC, 2013). Thus, the
worldwide response of the extremes to climate change
and its critical influences on people and livelihoods
receive increasing attention. In particular, given its large
population, South China (SC) can be especially vulnera-
ble to extreme precipitation events (Gemmer et al., 2011;
Ning & Qian, 2009; Wu et al., 2020; Zhang et al., 2015;
Zhang et al., 2018a).

Numerous works have focused on a large amount of
summer rainfall over SC (Chan & Zhou, 2005; Chang
et al., 2000; Wu et al., 2003; Zhou et al., 2007). In con-
trast, less attention has been given to the effects of winter
precipitation over SC. Although winter precipitation is
far less than summer rainfall, it experiences a large inter-
annual variability over SC (Ge et al., 2016; Jia et al.,
2015). Moreover, due to the lower temperatures in win-
ter, extreme precipitation and its related phenomena are
of particular concern. In early 2008, a severe rain- and
snow-freezing disaster in SC affected more than 100 mil-
lion people and resulted in a considerable economic loss
(Zhang et al., 2015; Zhou et al., 2011; Zhou et al., 2018).
It is, therefore, important to pay attention to the extreme
precipitation variability in winter over SC and its driving
factors. Some work has focused on the impact of tropical
climatic factors on winter extreme precipitation events
over SC (Gao et al., 2020; Huang et al., 2018; Yang et al.,
2019). For instance, Zhang et al. (2015) analyzed the con-
tributions of tropical sea surface temperature (SST)
anomalies in the Pacific and Indian Oceans to the vari-
ability of winter extreme precipitation in SC. Generally,
winter extreme precipitation related to large-scale atmo-
spheric circulation over SC is modulated by these factors
almost simultaneously. Given the severe impacts on the
economy and agriculture in SC, however, finding poten-
tial predictors for winter extreme precipitation over the
region is of great importance.

In recent years, increasing numbers of studies have
suggested that sea ice in high latitudes should be consid-
ered to be a key indicator of the extreme events due to its
large interannual variability (Cohen et al., 2018; Li et al.,
2020; Muyuan et al., 2020; Ogawa et al., 2018; Overland
et al., 2016; Zhang et al., 2018b). As a major component
of the Earth's energy budget system, sea ice is sensitive to
the conditions in both the atmosphere and ocean, and
may in turn modulate climate by altering the exchange of
heat, moisture, and momentum between the atmosphere
and ocean (Deser et al., 2000; Guemas et al., 2016). In
particular, sea ice cover in the Okhotsk Sea, which is
located on the northwest rim of the Pacific Ocean, plays

a crucial role in the East Asian climate (Honda et al., 1996;
Liu et al., 2007; Nakanowatari et al., 2010). Sea ice extent
in the Okhotsk Sea shows seasonal variation, which
reaches its maximum in late winter (January–March;
JFM), covering 50%–90% of the region (Nakanowatari
et al., 2010; Ogi et al., 2015). Honda et al. (1999) demon-
strated that sea ice anomalies in the Okhotsk Sea lead to
anomalous heat fluxes at the ocean surface, and subse-
quently exert substantial feedback forcing on the local and
remote response. However, it is unclear whether the vari-
ability of sea ice cover in the Okhotsk Sea affects winter
extreme precipitation over SC.

In this study, we establish links between the winter
sea ice concentration (SIC) in the Okhotsk Sea and the
following winter extreme precipitation over SC. This may
further improve our understanding of air-sea-ice interac-
tions and thus aid the predictability of winter extreme
precipitation over SC. The reanalysis datasets and numer-
ical models used in our work are introduced in section 2.
Section 3 reveals the links mentioned above and the
mechanism through which the Okhotsk Sea SIC impacts
winter extreme precipitation over SC. A brief summary
and discussion are provided in section 4.

2 | DATA AND METHODS

2.1 | Observations

The daily precipitation dataset was provided by the National
Meteorological Information Center of the China Meteorolog-
ical Administration (CMA; http://data.cma.cn). We excluded
stations with missing values and temporal inhomogeneity.
As a result, 96 stations in SC (108�–120�E, 22�–26�N) with
precipitation records for 40 years (1 January 1979 to
31 December 2018) have been extracted. The monthly mean
SIC data and SST data were from the Met Office Hadley
Centre Global Sea Ice and Sea Surface Temperature
(HadISST1) dataset with a horizontal resolution of 1� for the
1979–2017 period (Rayner et al., 2003). Atmospheric circula-
tion data with a 2.5� horizontal resolution, including hori-
zontal wind, vertical velocity, specific humidity, and sea
level pressure (SLP) for the same period were provided by
the U.S. National Centers for Environmental Prediction
(NCEP)–Department of Energy (DOE) Reanalysis 2 dataset
(Kanamitsu et al., 2002).

In this study, only daily precipitation in winter
(December–February; DJF) was considered. To assess
winter extreme precipitation events over SC, we com-
puted the extreme precipitation frequency (EPF) of each
station in SC, defined as the number of days when the
daily precipitation amount was greater than the 95th per-
centile of all rain days (above 0.1 mm) at the same station
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in 39 winters during 1979–2018 (winters of 1979/1980–
2017/2018). A SIC index is used to describe the variation
of sea ice cover in the Okhotsk Sea, which is defined as
SIC anomalies (SICAs) averaged in the Okhotsk Sea
(141�–155�E, 44�–59�N). To reduce the effect of global
warming, the linear trend of the SIC index was removed.

2.2 | Numerical models

To confirm our hypothesis and further identify the role of
SICAs in the Okhotsk Sea, control and sensitivity experi-
ments were performed with the Community Atmosphere
Model Version 5 (CAM5; Neale et al., 2010), which has
30 hybrid sigma-pressure vertical levels with the horizon-
tal resolution of 0.937� � 1.25� (latitude � longitude).
The control run was forced by the climatological monthly
mean SST and sea ice boundary conditions of observa-
tions with a 50-year integration. In the sensitivity experi-
ment, an observational sea ice is constructed by imposing
the composite difference of SIC anomalies in the Okhotsk
Sea between heavy and light sea ice events (defined as
years when the JFM-averaged SIC index was greater than
0.5 positive standard deviation and less than 0.5 negative
standard deviation, respectively) on the JFM climatologi-
cal SIC anomalies; then, a 50-year run was performed
with the climatological SST and the SIC anomalies in the
Okhotsk Sea forced sea ice boundary conditions and the
last 35 years were taken for analyses.

3 | RESULTS

To identify spatial and temporal features of the winter
EPF over SC, empirical orthogonal function (EOF) analy-
sis was performed (Figure S1). The two leading modes
account for 75.8% and 8.2% of the total variance, respec-
tively. They are well separated from each other according
to the criteria of North et al. (1982). The first leading
EOF (EOF1) mode is characterized by a spatially coher-
ent pattern with positive anomalous EPF over SC. The
leading principal component (PC1) mainly manifests
interannual variability and is highly correlated with the
area-weighted average of winter EPF over SC (R = 0.99).
Therefore, the winter EPF index is defined as the normal-
ized PC1 after removing the linear trend. To investigate
the relationship between the SIC in the Okhotsk Sea and
winter EPF over SC, we calculated the lead–lag correla-
tion between the three-month running averaged SIC
index and the winter EPF index (Figure 1a). Hereafter,
the year in which the winter (DJF) extreme precipitation
occurs is denoted as year 0 (DJF[0]) and the preceding
year as year �1. The correlation between the three-

month running averaged SIC and DJF(0) EPF indices
indicates that the strongest negative correlation occurs
when the SIC in the Okhotsk Sea leads winter EPF over
SC by around 11 months. The correlation coefficient
between the JFM(�1)-averaged SIC index in the Okhotsk
Sea and DJF(0)-averaged EPF index over SC is �0.38 (sig-
nificant at the 95% confidence level), which suggests a
close connection between the winter SIC index in the
Okhotsk Sea and the following winter EPF index over SC
(Figure 1b). These indicate that larger SIC in the Okhotsk
Sea favors lower EPF over the SC in the following winter,
and vice versa.

To confirm the covariability of the winter SIC and the
following winter EPF, we conducted maximum covari-
ance analysis (MCA; Bretherton et al., 1992) between
JFM(�1)-averaged SICAs in the Okhotsk Sea and the
DJF(0)-averaged EPF over SC. The first leading MCA
mode accounts for 95.7% of the total squared covariance
(Figures S2a,b). The winter Okhotsk Sea is dominated by
a negative SICA pattern, which shares characteristics
with the correlation map in Figure 1d. In the following
winter, the EPF pattern bears a strong resemblance to the
correlation map in Figure 1c, with positive EPF anoma-
lies over SC. The correlation coefficient between the
corresponding expansion coefficients is 0.43 (significant
at the 99% confidence level), indicating that the two fields
included in the MCA are strongly coupled (Figure S2c).
Therefore, these results support the finding that the win-
ter (JFM(�1)) SIC in the Okhotsk Sea is significantly
related to the following winter (DJF(0)) EPF over SC.

The results presented thus far indicate that the winter
SIC in the Okhotsk Sea is closely tied to the following winter
EPF over SC. It is thus necessary to examine whether the
wintertime Okhotsk Sea SIC and the following winter EPF
in SC are physically and dynamically linked. To understand
the role of Okhotsk Sea winter SICA forcing in reinforcing
the North Pacific anomalies, we began by examining the
regression maps of the seasonal evolution of SST and surface
wind anomalies against the JFM(�1)-averaged SIC index
(Figure 2).

The spatial distribution of surface wind anomalies
associated with the SIC index shows an anomalous
cyclone and anticyclone pair over the North Pacific dur-
ing JFM(�1), exhibiting a meridional dipole structure
(Figure 2a), which reflects the dominant physical features
of the positions of SLP anomalies (SLPAs). The composite
differences of SLPAs over the North Pacific between
heavy and light sea ice events are consistent with the sur-
face wind anomalies (Figure S3a), which is reminiscent
of the negative phase of the North Pacific Oscillation
(–NPO; Rogers, 1981; Walker & Bliss, 1932), with a lobe
of negative anomalies over the Aleutian Islands and
broad positive SLPAs extending from 40�N to as far south
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as the equator. While the NPO-like SLPAs primarily
result from internal atmospheric variability, the circula-
tion anomalies are reinforced by atmospheric
teleconnections from the change in the SICAs (Kim
et al., 2020; Yeo et al., 2014). Sea ice can help to reinforce
the atmosphere above by regulating energy flux transfer.
For example, the presence of sea ice significantly reduces
heat and moisture fluxes from the sea surface and conse-
quently acts to cool the atmosphere above the ice (Honda
et al., 1996; Yeo et al., 2014). Thus, the remote SIC-forced
effects from the Okhotsk Sea may contribute to these
SLPAs over the North Pacific. To validate our hypothesis
and verify the diagnostic analysis results, numerical sim-
ulation experiments were conducted using the CAM5
model to analyze the atmospheric response in the North
Pacific to the SICA forcing in the Okhotsk Sea. The dif-
ferences between the sensitivity and control experiments
were considered to be the anomalies forced by the winter
sea ice anomalies in the Okhotsk Sea. Under the winter
Okhotsk Sea SICA forcing, the simulated response of the
JFM-averaged SLPAs over the North Pacific was properly
captured by the model (Figure S3b), which is roughly
characterized as an �NPO-like pattern, with out-of-phase
SLP variations over the northern and southern poles with

a nodal point near 45�N. Although the simulated center
of the northern SLPA pole over the Aleutian Islands is
somewhat weaker and shifted eastward compared with
that in the observations, the spatial pattern of the simu-
lated SLPAs shares characteristics with the SLPAs seen
in Figure S3a, which is further supported by the strong
correlation of the SLPA patterns (R = 0.53; significant at
the 99% confidence level). Therefore, this experimental
result supports that the winter SICAs in the Okhotsk Sea
can help to reinforce the �NPO-like atmospheric circula-
tion over the North Pacific.

The �NPO generated by the concurrent Okhotsk Sea
SICAs can then force an apparent Victoria mode (VM)-
like SST footprint over the North Pacific in spring
through modulating surface heat fluxes (Vimont et al.,
2001, 2003), with a tilted SSTA dipole pattern in the
extratropical Pacific and negative SSTAs in the northeast
Pacific (Figure 2b; Bond et al., 2003; Ding et al., 2015).
This SST footprint persists until summer in the subtropics
via a wind-evaporation-SST feedback mechanism (Xie &
Philander, 1994; Figures 2c,d). The negative SSTAs in the
subtropical northeast Pacific, combined with positive
SSTAs in the western North Pacific, increase the zonal
SSTA gradient along the western-central tropical Pacific

(a) (b)

(c) (d)

FIGURE 1 Relationship of winter EPF over SC with the Okhotsk Sea SIC. (a) Lead–lag correlations of the winter (DJF(0)) EPF index

with overlapping three-month averaged values of the SIC index. (b) Lead–lag correlations of the winter (DJF(0)) EPF index with the JFM

(�1) SIC index. In (a) and (b), the horizontal black dashed lines show the 95% significance level. Positive (red) and negative (blue) values of

the correlation coefficients are indicated by colored bars. (c) Correlations of the JFM(�1)-averaged SIC index with the following DJF(0) EPF

over SC. (d) Correlations of DJF(0)-averaged EPF index with the previous JFM(�1)-averaged SIC anomalies in the Okhotsk Sea. In (c) and

(d), the oblique lines denote values that exceed the 95% confidence level
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that in turn strengthening low-level easterly wind anom-
alies. Subsequently, the enhanced equatorial easterly
wind anomalies are conducive to triggering a positive
Bjerknes feedback (Alexander et al., 2010; Bjerknes, 1969;
Vimont et al., 2009), which drives the development of La
Niña-like cold SSTAs in the equatorial eastern Pacific
during the following winter (Figures 2e,f). Therefore, the
variability of Okhotsk Sea winter SICAs has the potential
to influence tropical Pacific SSTAs (i.e., El Niño–
Southern Oscillation (ENSO)) via air-sea-ice coupled pro-
cesses in the North Pacific.

As La Niña reached its peak during winter (DJF(0)),
an anomalous cyclone appeared in the western North
Pacific (WNP; Figure 2f). It is well-known that the anom-
alous anticyclone over the WNP (WNPAC) is an impor-
tant system that bridges the ENSO and East Asian
climate (Wang & Weisberg, 2000; Wu et al., 2009, 2017;
Xie & Wang, 2020; Yuan et al., 2012). The WNPAC dur-
ing an El Niño mature winter is regarded as a Rossby
wave response to the negative heating anomalies via local
thermodynamic atmosphere–ocean interaction (T. Li
et al., 2017; Wang & Weisberg, 2000; Wu et al., 2010; Wu

(a) (b)

(c) (d)

(e) (f)

FIGURE 2 Regression maps of the JFM(�1)-averaged SIC index with the three-month averaged SST (shaded) and 850 hPa wind

(vectors) anomalies for JFM(�1), MAM(�1), MJJ(�1), JAS(�1), SON(�1), DJF(0). SST anomalies significant at the 90% confidence level are

indicated by black dots. Only surface wind vectors significant at the 90% confidence level are shown
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et al., 2017; Zhang et al., 1996). In the opposite phase, the
anomalous cyclone induced by La Niña enhances north-
easterly anomalies on the northwest flank that weaken
the water vapor transport from the Indian Ocean and the
South China Sea to SC (Figures 2f, 3c). Meanwhile, the
East Asian winter monsoon (EAWM) induced by La
Niña-like SSTAs is significantly enhanced (Figure 2f;
Wen et al., 2000), which further reduces winter rainfall
over SC (Jia et al., 2015; Wang & Chen, 2010; Wen et al.,
2000; Zhou & Wu, 2010). Additionally, the divergence at
low-level and convergence at high-level in SC result in
descending motion, suppressing convection over SC
(Figures 3a,b), which further sets up a favorable condi-
tion for the decreasing winter EPF over SC. The above
analyses indicate that the ENSO (i.e., La Niña) may act as
a key “power amplifier,” which increases the signal from
the extratropical North Pacific to a level that is strong
enough to drive the East Asian climate, boosting the
potential impact of the winter SICAs in the Okhotsk Sea

on the following winter EPF over SC via a positive
atmosphere–ocean feedback process.

One may argue whether such a relationship between
the winter SICAs in the Okhotsk Sea and the following
winter EPF in SC can be reproduced in climate models
from the Coupled Model Intercomparison Project phases
5 or 6 (CMIP5 or CMIP6). We further examined this rela-
tionship using the CMIP6 (5) historical experiments
(details are given in Table S1) from 1979–2014 (1970–
2005). Figure S4 shows that 1 out of the 12 CMIP6
(EC-Earth3-Veg-LR) and 2 out of the 19 CMIP5 (MIROC-
ESM-CHEM; MPI-ESM-LR) models can reasonably simu-
late the observed SIC-precipitation relationship, and the
multi-model ensemble (MME) mean of this three models
of the correlation map of the JFM(�1)-averaged SIC index
with the DJF(0)-averaged EPF over SC (Figure S3c) can
reasonably reproduce the observed results (Figure 1c).
Although the negative MME mean precipitation anoma-
lies occur over the greater part of SC, most of the models

(a) (b)

(c) (d)

FIGURE 3 Correlation maps of the JFM(�1)-averaged SIC index with DJF(0) divergence (positive values denote divergence) over East

Asia at (a) 200 and (b) 700 hPa, (c) vertically integrated (from 1000 to 500 hPa) water vapor transport flux (shaded and vectors), and

(d) vertical velocity averaged between 22�N and 26�N (shaded), respectively. Areas exceeding the 90% confidence level are stippled by white

dots in the above plots. The black boxes denote the SC region (108�–120�E, 22�–26�N)
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have difficulty reproducing the relationship due to uncer-
tainty about the simulated NPO-like atmospheric variabil-
ity in the CMIP6 (5) models. Despite this, as expected, the
MME mean of the correlation map of the JFM(�1)-
averaged SIC index with the SLPAs over the North Pacific
(Figure S3d) is very similar to the observed pattern shown
in Figure S3a, which implies that the simulated atmo-
spheric circulation anomalies can be reinforced by the
change in the Okhotsk Sea SICAs. The stimulated –NPO-
like atmospheric circulation in turn induces the La Niña-
like SST anomalies in the following winter (results of the
three models are given in Figures S5, S6, and S7). There-
fore, further modeling studies are required to improve
understanding of the air-ice-sea processes in the North
Pacific.

4 | SUMMARY AND DISCUSSION

The present work investigates the relationship between
the winter SIC in the Okhotsk Sea and the EPF over SC
during the following winter. The significant negative cor-
relation between the JFM(�1)-averaged SIC anomalies in
the Okhotsk Sea and variations of the DJF(0)-averaged
EPF over SC indicates that the SICAs in the Okhotsk Sea
are closely related to the following winter EPF over SC
with a leading time of about 11 months. We argue that
winter SICAs in the Okhotsk Sea can serve as a precursor
to the following winter EPF over SC. The simulation was
conducted to analyze the atmospheric response in the
North Pacific to the SICA forcing in the Okhotsk Sea.
Similar to the observations, we found that winter SICAs
in the Okhotsk Sea may help to reinforce the �NPO-like
atmospheric circulation over the North Pacific. The

�NPO induces the development of La Niña-like SSTAs in
the equatorial eastern Pacific during the following winter
by forcing VM-related SSTAs in the extratropical North
Pacific. In turn, the cyclonic flow over the tropical west-
ern Pacific and enhanced EAWM induced by La Niña
weaken the water vapor transport from the Indian Ocean
and the South China Sea, which set up a favorable condi-
tion for the decreasing winter EPF over SC (Figure 4).
These analyses indicate that the ENSO (i.e., La Niña)
may act as a key “power amplifier” to boost the impact of
the winter SICAs in the Okhotsk Sea on the following
winter EPF over SC via a positive atmosphere–ocean
feedback process. Thus, Okhotsk Sea winter SIC may act
as an effective predictor of winter extreme precipitation
over SC.

Given the uncertainty in the prediction of extremes,
improving the predictability of extremes is one of the
most important issues in climate science. We emphasize
in this study that SIC in the Okhotsk Sea help to main-
tain the –NPO-like pattern that favors the reduction of
the winter extreme precipitation over SC. However, we
do not downplay other climatic factor in the Atlantic and
Indian Ocean that may also play roles in the winter
extreme precipitation over SC (Wang, 2019; Zheng &
Wang, 2021). Additionally, the sea ice cover in high lati-
tudes has experienced a significant decrease in recent
years. The sharp decrease in sea ice cover may be attrib-
uted to global warming (Hansen et al., 2010; Screen &
Simmonds, 2010; Serreze et al., 2009). Future research is
needed to improve understanding of the response of the
variability of sea ice cover in high latitudes and other cli-
matic factors and their climate impacts on global
warming (Gao et al., 2015; Li et al., 2020; Liu et al., 2012;
Ogawa et al., 2018; Sato et al., 2018).

VM

La Niña

Cold

Warm

FIGURE 4 Schematic diagram explaining how the winter SIC in the Okhotsk Sea affects the following winter EPF over SC. A strong

positive SIC during winter helps to reinforce the negative VM during the following spring via the �NPO-like SLPA variability, which

induces the development of La Niña-like cooling SSTAs. The convective warming induced by La Niña triggers the formation of the

anomalous cyclone over the WNP. The anomalous northeasterlies associated with the cyclone favor insufficient water vapor and anomalous

descending motion over SC, finally resulting in the decrease of winter EPF over SC
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